Subspace Correction Methods for a Class of Non-smooth and Non-additive Convex Variational Problems in Image Processing

نویسندگان

  • M. Hintermueller A. Langer
  • MICHAEL HINTERMÜLLER
  • ANDREAS LANGER
چکیده

The minimization of a functional composed of a non-smooth and non-additive regularization term and a combined L1 and L2 data-fidelity term is proposed. It is shown analytically and numerically that the new model has noticeable advantages over popular models in image processing tasks. For the numerical minimization of the new objective, subspace correction methods are introduced which guarantee the convergence and monotone decay of the associated energy along the iterates. Moreover, an estimate of the distance between the outcome of the subspace correction method and the global minimizer of the non-smooth objective is derived. This estimate and numerical experiments for image denoising, inpainting, and deblurring show that in practice the proposed subspace correction methods indeed converge to the global solution of the underlying minimization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First order algorithms in variational image processing

The success of non-smooth variational models in image processing is heavily based on efficient algorithms. Taking into account the specific structure of the models as sum of different convex terms, splitting algorithms are an appropriate choice. Their strength consists in the splitting of the original problem into a sequence of smaller proximal problems which are easy and fast to compute. Opera...

متن کامل

Adaptive Monotone Multigrid Methods for some Non{Smooth Optimization Problems

We consider the fast solution of non{smooth optimization problems as resulting for example from the approximation of elliptic free boundary problems of obstacle or Stefan type. Combining well{known concepts of successive subspace correction methods with convex analysis, we derive a new class of multigrid methods which are globally convergent and have logarithmic bounds of the asymptotic converg...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Adaptive Image Dehazing via Improving Dark Channel Prior

The dark channel prior (DCP) technique is an effective method to enhance hazy images. Dark channel is an image with the same size as the hazy image which represents the haze severity in different places of the image. The DCP method suffers from two problems: it is incapable for removing haze from smooth regions, causing blocking effects on these areas; it cannot properly reduce a haze with a no...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012